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The stability of oscillatory internal waves 
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Department of Chemical Engineering, Stanford University, Stanford, California 

(Received 24 April 1967) 

The stability of a periodic internal wave has been investigated experimentally 
and theoretically. From the analysis it is found that if a primary wave, with 
wave-number k, and frequency wo, is perturbed by two infinitesimal wave-like 
disturbances with wave-numbers k, and k, + k, and frequencies w, and w1 + wo, 
exponential growth of these disturbances will take place under certain conditions. 
The analysis also indicates which resonantly interacting disturbances can induce 
an instability and, when viscous dissipation is accounted for, predicts the mini- 
mum amplitude for which a wave is unstable. Experimental results demonstrate 
that this type of instability can cause the breakdown of a first mode internal 
wave propagating in a fluid composed of two layers of uniform density separated 
by a thin region in which the density varies continuously. 

1. Introduction 
One of the basic unanswered questions about progressive oscillatory internal 

waves concerns the mechanism by which they ‘break’, a phenomenon which is of 
considerable importance to the understanding of vertical transport processes 
in the oceans (Munk 1966). Owing to the dearth of experimental data on this sub- 
ject, however, this question of ‘break-up’ has received to date only conjectural 
answers, a case in point being Phillips’s (1966) proposal that the probable mechan- 
ism of breaking is shear induced, in the sense that an internal wave will break 
when the shear associated with it becomes sufficiently large to promote a local 
dynamic instability. 

During the course of an experimental study of internal waves in a stratified 
fluid composed of two miscible fluid layers, Keulegan & Carpenter (1961) ob- 
served that, under certain circumstances, these waves generated ‘vortices ’ in 
the region separating the two layers. Although unable to determine the exact 
nature of these disturbances,Keulegan &Carpenter did report that the ‘vortices ’ 
appeared only when the thickness of the region of varying density between the 
layers became larger than some critical value, an observation which is in direct 
opposition to what would be expected if the phenomenon were due to shear 
instability. This is so because, as Munk (1966) has shown, for a fixed amplitude 
and frequency, the local Richardson number, and hence the stability, increase 
with the thickness of the interfacial region. This apparent inconsistency, although 
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far from conclusive, does suggest, therefore, that there may exist a mechanism, 
other than that of shear instability, by which internal waves spontaneously de- 
stroy themselves. 

In an attempt to determine the cause of this ‘breaking’ phenomenon, we be- 
gan an experimental program aimed at  studying qualitatively the lowest mode 
periodic internal wave in a two-layer fluid, and observed that a single train of 
such waves is indeed subject to some form of instability which appears to be 
different from the shear instability mechanism proposed by Phillips. The pur- 
pose of this paper will be then to present a new theoretical investigation of the 
stability of internal waves to a particular type of disturbance, and to demonstrate 
that this new theory does, in fact, explain our experimental observations. In  
particular, it will be shown that a single train of oscillatory internal waves can be 
unstable to infinitesimal disturbances made up of free progressive waves with 
amplitudes that vary slowly in time. The mechanism of the instability will be 
similar, in a sense, to the weak resonant interactions which have been shown 
(McGoldrick, Phillips, Huang & Hodgson 1966) to produce energy transfer be- 
tween surface waves and which have been investigated theoretically by Thorpe 
(1966) in reference tointernal wavemotion. But,inbothobjectiveandresult, these 
previous studies differ significantly from our investigation, which will concern 
the fate of infinitesimal waves that resonantly interact with a single finite ampli- 
tude wave. In  short, it  will be seen that interactions of this type can be divided 
into two cIasses, depending on the manner in which the amplitudes of the dis- 
turbances vary with time, and that for one class of these interactions the ampli- 
tudes will always increase a t  an exponential rate, thus reaching an appreciable 
size no matter how small the initial disturbances. 

The theoretical problem is now formulated in terms of the two-dimensional 
equations of motion for an incompressible, inviscid and non-diffusive fluid of 
variable density 

, ~ a  aP ,D8 aP 
p 7 + -  = o  , p7+-+ggp=oO, 

Dt 82 Dt ag 

where @ is directed upwards, a and 0 are fluid velocities, P is the pressure and 
D/D$ denotes the substantive time derivative moving with a fluid particle. Using 
the familiar method of cross-differentiation the x and y momentum equations 
can now be combined into a single equation not involving the pressure. Then 
introducing L, a characteristic length, the quantities 

1 
s 8 = (phrnaxlpmin), p = -1n(p”/@maxphmin)$), 

(x, y) = (2, Q)/L’ Q = (qS/L)4, t = szt” 
and the dimensionless streamfunction $, defined by 
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we arrive at  the dimensionless equation of motion 

735 

Restricting our interest to fluids for which 6 < 1 and making use of a modified 
Boussinesq approximation, we now neglect the terms which involve 6 explicitly, 
thus arriving a t  the simplified equation of motion 

(1)  

the equations which will serve as the basis for the subsequent theoretical analysis. 
In  what follows, we shall obtain an approximate solution of equations (1) 

which will describe a triad of small amplitude wave-trains that are weakly coupled 
through resonant interaction. The point of interest in this development will be 
the energy exchange between the different members of the triad, and it will be 
shown that, as a consequence of this exchange, a single train of periodic waves is 
unstable to particular infinitesimal disturbances. This resonant interaction in- 
duced instability is, in some respects, similar to  the instability of the Stokes wave 
recently investigated by Benjamin & Feir (1967), but, as will be seen, the inter- 
action between internal waves is much more direct than that between surface 
gravity waves. 

In a later section we shall describe the experiments which motivated this study. 
Here the strength of the internal wave interaction is demonstrated by the vigour 
with which the resonant instability is manifested. Indeed, the phenomenon is so 
dramatic that it is easily observed without the need of any particularly careful 
measurements such as those that are required to study surface gravity wave 
interactions (McGoldrick et al. 1966). 

Finally, by accounting for the influence of viscosity, we shall show that the 
instability can occur only when the primary wave amplitude exceeds some critical 
value which can easily be determined theoretically. 

2. Analysis 
We shall develop here an approximate solution to (1) representing a triad of 

small amplitude internal wave-trains. The analysis will make use of techniques 
familiar in the study of wave-wave interactions (for example see McGoldrick 
1965); namely, the relevant parameters will be expanded in powers of the small 
amplitudes of the different waves and these amplitudes will, in turn, be allowed 
to be weak functions of time. Thus we express 

and 



7 2 6  Russ E. Davis and Andreas Acrivos 

Substituting these into (1) and collecting terms of O(a) leads to 

which form the basis of the well-known theory of infinitesimal internal waves 
(for example see Yih 1960). We note here that ( 2 )  has a solution of the form 

$i = f i ( y )  sin (kx + wt),  

where fi satisfies 

with boundary conditions 

while, from (3), 

f = 0 at y = D,,D,, 

p(1) = - ( k / o )  Rf sin (kx + ot). 

(4) 

Clearly, system (4), being of the Sturm-Liouville type, has an infinite number 
of solutions f for any given k, each solution corresponding to a different eigen- 
value y2 = ( k / ~ ) ~ .  Although these can be developed, in principle, for arbitrary 
R(y), it  suffices for our purposes to consider only the two particular cases R = 1 
and R = sech2 y. 

For R = 1, D, = - 1 and D, = 1, the solutions are simply 

f = sin&mn(y + l), y2 = ( & ~ n ) ~ +  k2 for m = 1 ,3  ,..., ( 5 )  
where each value of m corresponds to a different wave mode and where the dimen- 
sionless propagation velocity l/r decreases in absolute magnitude as the mode 
number increases. 

Similarly, if R = sech2y and the conditions that f vanish are placed at  plus 
and minus infinity, closed form solutions can also be found (Groen 1948). For 
future reference, we note here those corresponding to the first three modes, 

f = sechlkly, y2 = lk l ( l+  / E l )  for m = 1, 

f = sechlklytaiihy, y2 = (1 + / k 1 ) ( 2 +  IkJ) for m = 2,  

f = sechlkly (1 + 1*5+1klsechay), y2=  ( 2 + ] k 1 ) ( 3 + I k l )  for m =  3, 
I (6) 

+ Ikl 
and present in figure 1 the lines of constant density as they are distorted by the 
first and second mode waves of this type. 

Now turning our attention to the determination of qkij, we substitute $( into 
the O(a2) terms of (1) and obtain 
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We are interested here in the case of three waves which are coupled through a 
resonant interaction, that is, where 

(9) k, + k, = k, and wo + w1 = w2. 
When this resonance condition is met, (7) can be solved only for specific values 
of the amplitude variations, da,/dt. To see this we need only consider the deter- 
mination of the components $o,l, Ilr,,z and which arise as a result of the inter- 
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FIGURE 1. (a) Lines of constant density for a first mode wave in a two-layer fluid. 
(b )  Lines of constant density for a second mode wave in a two-layer fluid. 

action between the different wave-trains. For example, to construct $o,l we sub- 
stitute the form $o,l = g(y) cos (k ,x+w, t )  into (7),  obtaining 

where da,/dC = a2alao. However, since k,, w2 are eigenvalues of the homogeneous 
counterpart of this equation, a solution exists only if the right-hand side is 
orthogonal to the homogeneous solution, f2. This then requires that 
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Similarly, in order to determine ko, and $,, 2, we require that 
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and 
dao/dt = a,,ala2, da,/dt = a,aoa,, 

The amplitude equations 

dao/dt = aoa1a2, da,/dt = alaoa2, da,/dt = a2aoa,, (11) 

together with equations (10) defining the constants ai, describe then the energy 
interchange between the three components of the resonant triad of waves. These 
equations are general to all wave-wave interactions which are of second order in 
the wave amplitudes and were obtained, for example, by McGoldrick (1965) in 
studying the interaction of gravity-capillary surface waves. 

The integration of these amplitude equations is easily accomplished in terms 
of Jacobi elliptic functions. For the case ala2 < 0 and a2 = 0 at t = 0, the appro- 
priate solution is 

a. = ao(0) dn ( z ,  Z), a, = al(0) en ( z ,  I),l 
(12) 

a2 = - al(o) ( - a2/a1): sn ( z ,  z), I 
where =. = ao(0) (-a,a,)*t, I = - (aoa~(0) ) / (a la~(O))  and sn, cn and dn are Jacobi 
elliptic functions in the notation of Milne-Thompson (1964). Similarly, the solu- 
tion for ala2 > 0 is 

a,, = ao(0) dc (2, l) ,  ctl = a,(O) nc (2 ,  i),\ 

a2 = al(o) ( a 2 / ~ l ) ~  sc (2, I ) ,  J 
where 

Z = a,(0)(a,a2)*t and I"= 1-I. 

Although these solutions are well known (for example McGoldrick reported the 
solution for a1a2 < 0) it seems that previous workers have overlooked one very 
interesting consequence of the resulting amplitude variations, namely the fact 
that under certain circumstances a single wave is unstable to an infinitesimal 
disturbance consisting of a resonantly interacting wave. To see this, let us con- 
sider a single wave, with amplitude a. = A ,  on which we impose a disturbance 
consisting of two additional waves with initial amplitudes al(0), a2(0) < A. If 
these three waves form a resonant triad, then the resulting amplitude variations 
will be described by the linearized equivalents of equations (9), 

da,/dt = a, Aa2, da,/dt = a2 Aa,, (14) 
which have solutions of the form 

a,, a2 exp { k A 4.1.2, t>. 
Clearly, the nature of these solutions is highly dependent on the sign of the pro- 
duct a,a,; in fact, if ala2 > 0, we can say that the primary wave is unstable to  
this particular disturbance. This result can, of course, be deduced directly from 
the exact solutions (12) and (13) by allowing al(0), and hence I ,  to approach 
zero. 
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This resonant instability is the phenomenon of interest here, and, hence, it is 
worth while to summarize the conditions underwhich a primary wave, (ko, wo),  is 
unstable. First, there must exist a pair of free waves forming a resonant triad 
with the primary wave, that is there must exist eigenpairs (wl,  kJ and (w2, k2)  
which satisfy the resonance condition (9). And, secondly, the product of a1a2 
computed from (10) must be positive. If these conditions are met, our theory 
would predict that an infinitesimal disturbance initially composed of either of the 
resonant free waves will grow at an exponential rate until the disturbance ampli- 
tude becomes comparable to the primary wave, or until the disturbance itself 
becomes unstable through some other resonant interaction. 

In the following section we shall apply these criteria to wave motion in some 
specific stratified fluids and shall find that, in each case considered, an infinite 
number of disturbances exist which can destabilize agiven wave. In  addition, in a 
later section, we shall present experimental evidence to show that this type of 
instability does occur and that the destabilizing disturbance is one of those pre- 
dicted by the analysis. 

3. Examples 
Having obtained the criteria for determining whether or not a single train of 

internal waves is unstable to a certain infinitesimal disturbance, we can proceed 
to apply them to waves propagating in particular stratified fluids. Although the 
task involves rather complicated calculations, owing to the nonlinear nature of 
the dispersion relation and the fact that there are an infinite number of inter- 
mode combinations which may induce an instability, we can derive some useful 
approximate results by restricting our interest to low-frequency waves in simple 
stratifications. The questions to be answered here are: first, which resonantly 
interacting disturbances can induce instability; 7 and, secondly, what is the rate 
a t  which these disturbances grow ‘1 

For purposes of comparing the predictions of the theoretical analysis with the 
experimental results of the next section, we shall choose as one example the case 
of a low-frequency first mode wave propagating in a two-layer fluid of depth 2 0  in 
which the density gradient at rest is given by R = sech2 y.  In  addition, we shall 
investigate the case of an exponentially stratified fluid (for which €2 = 1)  con- 
tained between walls at  y = & 1, since this will allow us to obtain some simple 
results regarding the stability of low-frequency primary waves of arbitrary 
mode. 

Consider first the case of R = sech2 y.  For a two-layer fluid of finite depth it is 
not possible to use directly the results presented in (6) for the eigenfunctions, 
f(y), which were derived for an infinite depth. However, because our interest 
will be restricted to small wave-numbers and large depths (D + 1)) an approxi- 
mate solution of the eigenvalue problem (4) can easily be found by making use 

t It has recently come to our attention that this first question can be answered without 
detailed calculation by making use of a general stability criterion developed by Hassel- 
mann (1967). 
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of the method of singular perturbation expansions. Thus, in the ‘inner ’ region 
we have 

d2f + y2 sech2 yf = ky, 

while, in the ‘outer ’regions and in terms of the appropriate stretchedco-ordinate 
dY2 

y” = ky, equation (4) reduces to 

?Y-J= 0. 
dfj2 

Applying the conditions that f = 0 at y = & D, and matching the two solutions 
in the overlap region in the usual way, we easily find that: in the inner region, 

where P, and Q, are, respectively, the nth Legendre functions of the first and 
second kind, 7 = tanh y, and 

(15) y 2  = m(m - 1)  + (2m - 1)k coth kD + O(k2),  

while, in the outer regions, 

sinh k(D - y) 
+ O ( k )  for y > 0, ’ = sinh kD 

+ O ( k )  for y < 0. 
sinh k(D + y) 

sinh kD 
p =  ( -  1)-1 

By comparing these results with (6) it can be seen that they agree with the exact 
solution when D -+ 00. 

With these approximate expressions forf(y) and y2(k) ,  it is not difficult now to 
compute from (9) the mode numbers, frequencies and wave-numbers (m,, m,; 
o,, w,; k,, k,) of all disturbances which interact resonantly with a first mode wave 
of frequency wo and wave-number k,. Then, for each of these disturbances, we 
can evaluate from (10) the product a,c~, which determines not only the absence 
or presence of an instability, but also, in the latter case, its rate of growth. The 
results of these calculations (the details of all the calculations presented in this 
section are given by Davis 1967) indicate that, up to O(k i ) ,  positive values of 
a1a2 are possible only if component 1 is directed opposite to both the primary 
wave and component 2 ;  and, if both mode numbers m, and m, are greater than 1 
with m2 = m, & 1. Then 

01,012 = % , 2 ~ 1 ~ 2 ( ~ 1 +  W / ( 6 4 m 2  - 1% (16) 

where m is the smaller of m, and m,, and 

0, = - w o / [  1 + (-)&I m2, - m, + O(wi).  
mi - m, 

Let us now consider a primary wave of arbitrary mode propagating in an ex- 
ponentially stratified fluid of finite depth. Although the simple form of theappro- 
priate eigenfunctions, f(y), (see equation (5)) greatly reduces the computational 
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difficulty, it  is still necessary to restrict interest to long waves for which the dis- 
persionrelation can be simplified to y; = k inmi+ O(kz ) .  Under this restriction, 
it is possible to show that, up to O(k i ) ,  disturbances which produce positive values 
of ala2 are the following. 

(a) Both disturbances propagate in the same direction as the primary wave, and 
m2 = m,+m,, with m, > m,. Then, 

and 
ala2 = n2kXm,(ml+mo)2(m,-ml)/64mi+ O(k$) ,  ( 1 7 a )  

w1 = - m,wo/m, + O(wt).  

( b )  Disturbance component 1 travels opposite to the primary wave and com- 
ponent 2, and m2 = m,+ml. Then, 

and 

As can be seen from the foregoing, for every possible primary wave there are an 
infinite number of disturbance pairs which induce instabilities and transfer energy 
from the primary wave to waves having different modes, different frequencies, 
and even a different propagation direction. 

Clearly, owing to the vast number of combinations of possible primary waves 
and destabilizing disturbances, it is impossible to verify experimentally all the 
results of this section. In  the subsequent section we shall present, therefore, ex- 
perimental investigation of the stability of a particular internal wave, which will 
indicate that, as the analysis predicts, a single first mode wave in a two-layer 
fluid is unstable and, further, that the destabilizing disturbance realized experi- 
mentally is indeed one of those predicted above. 

a1a2 = 7 ~ ~ k ~ m ~ m , ( m , + m ~ ) / ( l 2 8 m ~ +  64m0), 

w 1 =  -m,w0/(2m,+m,). (17b)  

4. Experimental results 
The experiments to be described here were performed in a lucite tank 2.5m 

long, 40 em deep and 10 em wide, filled with a stratified fluid that was made up 
of layers of fresh water and salt water. The tank was initially half filled with a well- 
mixed solution of salt and water having a uniform density ranging from 1.07 
to 1.12 g/cm3. Fresh water was then slowly floated on to the salt water, thereby 
creating a fluid composed of two constant-density layers separated by a thin re- 
gion in which the density varied continuously. In  order to alter the experimental 
conditions, the thickness of this variable-density layer could be reduced by slowly 
withdrawing fluid from the layer, or increased by waiting for diffusion to take 
place. As a means of visualizing the flow, drops of toluene and carbon tetra- 
chloride mixtures, which had been coloured with oil red dye, were injected into 
the upper layer and allowed to settle until they reached the level at which they 
were neutrally buoyant. Since the drops would then demarcate lines of constant 
density, they provided not only a method of visualizing the flow but also a way 
of determining the characteristics of the density gradient. 

To produce periodic first mode internal waves, a semicircular cylinder of 5 cm 
radius was oscillated vertically at  one end of the tank, with an amplitude that 
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could be varied from 0.5 to 3 em and a frequency that ranged from 0.3 to 1 c/s. 
Partitions were placed a t  the opposite end of the tank in such a way that the 
width of the channel gradually decreased to zero. This narrowing gap served to 
trap and to destroy by the action of viscosity incoming waves, thus preventing 
their reflexion back toward the wave-maker. 

When the wave generator was first set in motion, a regular train of nearly 
sinusoidal first mode waves was produced. Waves of this type, an example of 
which is depicted in figure 2,  plate 1, propagated without noticeable change of 
form apart from a gradual viscosity-induced decrease in amplitude. In  the im- 
mediate vicinity of the wave-maker there was some mixing in the density 
gradient layer, but, for the most part, the motion appeared to be a nearly pure 
first mode internal wave. 

However, if the frequency and the amplitude of the primary wave were made 
sufficiently large, it was found that this condition did not persist and that, as time 
passed, the once smooth wave became distorted by small ‘lumps ’ in the density 
gradient layer. These disturbances, which propagated in the same direction as 
the primary wave but with a much slower speed, grew slowly in time until even- 
tually they virtually destroyed the original motion. Figures 3, plate 1, and 4, 
plate 2,  are photographs of this phenomenon in its initial and advanced form. 
As can be seen, the ‘lumps ’ appear to be periodic in distance and, in the initial 
stage at  least, are similar in form to a second mode periodic wave. As the in- 
stability advances, the disturbances retain their spatial periodicity and straight- 
crested form, even when the wave shape has become severely deformed and the 
centre of each ‘lump ’ is a region of highly turbulent mixing. 

In  an attempt to explain this instability we first considered the possibility that 
the wave-maker itself produced some type of motion other than the original first 
mode wave. But since the frequency of the disturbance, rather than being simply 
related to the primary wave frequency, varied from 0.64 to 0.75 of the wave gener- 
ator frequency, this explanation had to be abandoned. Similarly, the possibility 
that the phenomenon was a manifestation of a local shear instability was dis- 
counted both because the local Richardson number was large (on the order of 2 
to 20) and because it is unlikely that such a mechanism would produce the highly 
periodic disturbances which were observed. Hence, we were led to propose that 
this phenomenon was a resonant instability of the type discussed in the previous 
sections. 

Now, the shape of the observed disturbance, as depicted in figure 3, suggests 
that it is actually a second mode component of some resonantly destabilizing 
perturbation and, as was shown in the previous section dealing with the two-layer 
fluid described by R = sech2y, there exists only one possible destabilizing per- 
turbation involving a second mode wave moving in the same direction as the 
primary wave. This disturbance is composed of component 1, with m, = 3, 
moving opposite to both the primary wave and the other perturbation component 
with mode number m2 = 2. In  order to provide a test of the hypothesis that the 
experimentally observed ‘lumps’ were actually a train of second mode waves 
excited by this resonant interaction, we chose to make use of the fact that the 
analysis predicts the frequency of the excited wave. Thus, substituting the dis- 
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persion relation (15) into the resonance condition (9), we obtain a more exact 
version of equation (16), 

where the variables are still the dimensionless ones used in the analysis. Hence, if 
the hypothesis about the nature of the disturbance is correct and if the density 
structure of the experimentally realized two-layer fluid is closely approximated 
by the R ( y )  = sechzy model, we should expect the measured disturbance fre- 
quency to be related to the primary wave frequency by means of (18). 

Although, in practice, it  is impossible to reproduce exactly a given density 
profile, measured density vs. height relations did not differ greatly from the ideal- 
ized expression treated analytically. Furthermore, it was found earlier by Davis 
& Acrivos (1967) that the speed of solitary internal waves propagating in this 
type of stratified fluid did agree quite closely with the analytical predictions for 
the sech2 y profile. It seemed reasonable, therefore, to expect that the propaga- 
tion velocity of internal waves in the experimentally realized two-layer fluid 
should fall close to the values predicted theoretically for the idealized profile, 
and, hence, that the frequency relation (18) should provide a method for verifying 
our hypothesis regarding the nature of the observed instability. 

The ratio wz/wo was obtained directly by counting the number of ‘lumps’ 
passing a fixed point per unit time, and measuring the frequency of the wave 
generator. On the other hand, to determine the dimensionless frequency, wo, 
one had to compute first the non-dimensionalizing frequency i2 = (gS/L)*, 
where 6 = 4ln and L was chosen so that in terms of the dimension- 
less co-ordinate y = y^/L the density gradient was given by R = sech2 y. The value 
of 6 was calculated from the measured densities of the upper and lower layers, 
while L was obtained by measuring, in the undisturbed fluid, the elevation of 
neutrally buoyant drops and fitting these data to the assumed density profile. 
With a, L and the depth of the fluid known, wo and D were then calculateddirectly 
and coth ko D was found from the dispersion relation (15). 

As seen in figure 5, the experimentally determined disturbance frequencies 
deviate only slightly from the theoretical values given by (18), thereby confirm- 
ing quantitatively an important feature of our theoretical model. 

Finally, it  seems likely that the mixing associated with large amplitude dis- 
turbances is due to a shear instability of the type proposed by Phillips. This is 
so because of the large shear associated with higher mode internal waves. For 
example, the minimum local Richardson number, [ - g(ap/ay)]/(a~/ay)~, associ- 
ated with the first mode wave in figure 2, plate 1, is of the order 15 as compared 
with the value + estimated for the second mode disturbance in figure 4, plate 2. 
While the latter is only a very crude estimate, it is clear that a shear instability 
induced by the disturbance is a possibility. 

w2/w0 = 0.635 + 0,{0*259 coth ko D + 0.070 Goth 0 . 9 0 ~ ~  D} + O ( W ~ ) ,  (18) 

5. Influence of viscosity 
From the analysis presented, it is not clear why, of the infinite number of 

possible destabilizing disturbances, it is only the disturbance for which m, = 3 
and m2 = 2 that is observed experimentally. To give a partial answer to this 
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question it is necessary to take into account the effects of viscosity which have 
been neglected up to this point, and which would be expected to affect the dis- 
turbance growth rate and hence the criteria for instability. Although, clearly, 
the inclusion of all viscosity effects would vastly complicate the analysis, sur- 
prisingly enough, for wave motions in fluids of the type investigated experi- 
mentally, the main results of interest can be obtained from some simple ap- 
proximate calculations. 

To begin, let us consider the viscous damping of a single small amplitude wave 
in a two-layer fluid of small viscosity, p, and great depth. Under these conditions, 
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FIGURE 5. Experimentally determined frequency ratio o,/o0 against 

W = ~ ~ ( 0 . 2 5 9  coth koD +0.070 coth 0 - 9 0 ~ ~ D ) .  

The solid line represents the theoretical prediction. 

the velocity field will be everywhere closely approximated by the solution of the 
inviscid equations of motion, so that, using the solutions obtained in $2, it is 
possible to show (for details of the following calculations see Davis 1967) that the 
average total energy associated with the wave 

<E) = f d z ~ z n ' , t s 2 r ' k d ~ ~  0 0  0 - D  dY{Epotential+ Ebineticj 

is given by 
D 

-D 
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where a is the amplitude of the wave. Similarly, by computing the dissipation 
function, we can show that the average rate of energy dissipation becomes 

Replacing ,u and p@) by their average values, and then relating the expressionsfor 
( E )  and (d ld t )  ( E ) ,  leads finally to the equation 

which determines, approximately, the rate at  which a single wave is damped by 
viscous dissipation. 

Now, assuming that the rate of energy transfer between resonantly coupled 
waves is, to a first approximation, independent of the fluid viscosity, we find 
that equations (14), which determine the amplitudes a, and a2 of the disturbance 
components, are modified by viscous damping to 

where /3, and P2 are defined by (19). This system admits solutions a, and a2 of 
the form exp {[ - &3J2 - P,) + A2a,a2)4] t>, from which it follows that 
exponential growth of a, and a2 is possible if 

Hence we see that in a slightly viscous fluid instability occurs only if a l ~ 2  > 0 
and 

dull& = Aa1a2-/3,a,, da2/dt = Acc2a,-~,a2, 

A2a,a2 > PlP2. 

A > Acritical (PlP2/ala2)'* (20) 
In  order to compute this critical amplitude for the case investigated experi- 

mentally we can make use of approximate calculations presented in 0 3 for the 
sech2 y density profile. First of all, for k < 1, we can calculate PI and P2 from (19) 
using the forms forf,(y) and -y: given in (15). Similarly, we can substitute directly 
into (20) the value of &,a2 given in (16). As il result, we find that -Acritical is 
related to m, the smaller of mi and m2, by the relation 

or, in terms of dimensional variables, 

and m is still greater than unity. 
Since P is a monotonically increasing function of m, it is clear that the critical 

amplitude at which the primary wave becomes unstable to a particular dis- 
turbance is least for those perturbations composed of one second and one 
third mode wave, but has the same value for both of the possible disturbances 
made up of these waves. This fact provides a partial explanation of the nature of 
the experimentally observed instability, but leaves unanswered the question of 
why the disturbance for which m, = 2 and m2 = 3 has not also been observed. 
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As we have noted in the previous section, the instability seemed to occur only 
for sufficiently large values of the primary wave amplitude and frequency, an 
observation which is explained by the fact that the critical amplitude is inversely 
proportional to k, and hence decreases as the frequency is increased. Similarly, 
as reported by Keulegan & Carpenter (1961), a wave of fixed amplitude and 
frequency becomes unstable when the interfacial region becomes thick, a fact 
which is again in qualitative agreement with (21). 

It is evident then that the second-order resonant interaction analysis, when 
modified to account for the influence of viscous damping, serves to explain many 
of the experimental facts regarding the instability of oscillatory internal waves. 

This work had its inception at  the Woods Hole Oceanographic Institution dur- 
ing the course of a summer project under the able guidance of Dr J. S. Turner 
and was supported by a grant from the Office of Saline Water and by a National 
Science Foundation fellowship to R. E. D. 
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